commit 34483e94917ebb265e8e6b975e5e7f380dae1538
parent 44f21bb69fe3e7d8d4d68a61550576fa24a3ea8e
Author: Wolfgang Corcoran-Mathe <wcm@sigwinch.xyz>
Date: Mon, 29 Jan 2024 14:05:14 -0500
Replace arrow with @result{} throughout.
Diffstat:
1 file changed, 416 insertions(+), 416 deletions(-)
diff --git a/doc/r7rs-small/r7rs-small.texinfo b/doc/r7rs-small/r7rs-small.texinfo
@@ -539,9 +539,9 @@ string, then the entire string is referred to.
@node Evaluation examples
@subsection Evaluation examples
-The symbol ``⟹'' used in program examples is read ``evaluates to.'' For example,
+The symbol ``@result{}'' used in program examples is read ``evaluates to.'' For example,
-@code{(* 5 8) ⟹ 40} means that the expression @code{(* 5 8)} evaluates to the object @code{40}. Or, more
+@code{(* 5 8) @result{} 40} means that the expression @code{(* 5 8)} evaluates to the object @code{40}. Or, more
precisely: the expression given by the sequence of characters ``@code{(* 5 8)}'' evaluates, in an
environment containing the base library, to an object that can be represented externally
by the sequence of characters `` 40.'' See section 3.3 for a discussion of external
@@ -777,7 +777,7 @@ the notation of structures with shared or circular substructure.
(let ((x (list 'a 'b 'c)))
(set-cdr! (cddr x) x)
- x) ⟹ #0=(a b c . #0#)
+ x) @result{} #0=(a b c . #0#)
@end example
@@ -793,7 +793,7 @@ In particular, it is an error for quasiquote (section 4.2.8) to contain them.
@example
#1=(begin (display #\x) #1#)
- ⟹ error
+ @result{} error
@end example
@@ -1107,7 +1107,7 @@ error to reference an unboundvariable.
@example
(define x 28)
-x ⟹ 28
+x @result{} 28
@end example
@@ -1124,9 +1124,9 @@ Scheme code.
@example
-(quote a) ⟹ a
-(quote #(a b c)) ⟹ #(a b c)
-(quote (+ 1 2)) ⟹ (+ 1 2)
+(quote a) @result{} a
+(quote #(a b c)) @result{} #(a b c)
+(quote (+ 1 2)) @result{} (+ 1 2)
@end example
@@ -1135,12 +1135,12 @@ notations are equivalent in all respects.
@example
-'a ⟹ a
-'#(a b c) ⟹ #(a b c)
-'() ⟹ ()
-'(+ 1 2) ⟹ (+ 1 2)
-'(quote a) ⟹ (quote a)
-''a ⟹ (quote a)
+'a @result{} a
+'#(a b c) @result{} #(a b c)
+'() @result{} ()
+'(+ 1 2) @result{} (+ 1 2)
+'(quote a) @result{} (quote a)
+''a @result{} (quote a)
@end example
@@ -1150,18 +1150,18 @@ they need not be quoted.
@example
-'145932 ⟹ 145932
-145932 ⟹ 145932
-'"abc" ⟹ "abc"
-"abc" ⟹ "abc"
-'#\a ⟹ #\a
-#\a ⟹ #\a
-'#(a 10) ⟹ #(a 10)
-#(a 10) ⟹ #(a 10)
-'#u8(64 65) ⟹ #u8(64 65)
-#u8(64 65) ⟹ #u8(64 65)
-'#t ⟹ #t
-#t ⟹ #t
+'145932 @result{} 145932
+145932 @result{} 145932
+'"abc" @result{} "abc"
+"abc" @result{} "abc"
+'#\a @result{} #\a
+#\a @result{} #\a
+'#(a 10) @result{} #(a 10)
+#(a 10) @result{} #(a 10)
+'#u8(64 65) @result{} #u8(64 65)
+#u8(64 65) @result{} #u8(64 65)
+'#t @result{} #t
+#t @result{} #t
@end example
@@ -1180,8 +1180,8 @@ is passed the resulting arguments.
@example
-(+ 3 4) ⟹ 7
-((if #f + *) 3 4) ⟹ 12
+(+ 3 4) @result{} 7
+((if #f + *) 3 4) @result{} 12
@end example
@@ -1228,17 +1228,17 @@ will be returned as the results of the procedure call.
@example
-(lambda (x) (+ x x)) ⟹ a procedure
-((lambda (x) (+ x x)) 4) ⟹ 8
+(lambda (x) (+ x x)) @result{} a procedure
+((lambda (x) (+ x x)) 4) @result{} 8
(define reverse-subtract
(lambda (x y) (- y x)))
-(reverse-subtract 7 10) ⟹ 3
+(reverse-subtract 7 10) @result{} 3
(define add4
(let ((x 4))
(lambda (y) (+ x y))))
-(add4 6) ⟹ 10
+(add4 6) @result{} 10
@end example
@@ -1269,9 +1269,9 @@ It is an error for a <variable> to appear more than once in <formals>.
@example
-((lambda x x) 3 4 5 6) ⟹ (3 4 5 6)
+((lambda x x) 3 4 5 6) @result{} (3 4 5 6)
((lambda (x y . z) z)
- 3 4 5 6) ⟹ (5 6)
+ 3 4 5 6) @result{} (5 6)
@end example
@@ -1294,11 +1294,11 @@ value and no <alternate> is specified, then the result of the expression is unsp
@example
-(if (> 3 2) 'yes 'no) ⟹ yes
-(if (> 2 3) 'yes 'no) ⟹ no
+(if (> 3 2) 'yes 'no) @result{} yes
+(if (> 2 3) 'yes 'no) @result{} no
(if (> 3 2)
(- 3 2)
- (+ 3 2)) ⟹ 1
+ (+ 3 2)) @result{} 1
@end example
@@ -1315,9 +1315,9 @@ unspecified.
@example
(define x 2)
-(+ x 1) ⟹ 3
-(set! x 4) ⟹ unspecified
-(+ x 1) ⟹ 5
+(+ x 1) @result{} 3
+(set! x 4) @result{} unspecified
+(+ x 1) @result{} 5
@end example
@@ -1389,14 +1389,14 @@ order, and the values of the last one are returned.
@example
(cond ((> 3 2) 'greater)
- ((< 3 2) 'less)) ⟹ greater
+ ((< 3 2) 'less)) @result{} greater
(cond ((> 3 3) 'greater)
((< 3 3) 'less)
- (else 'equal)) ⟹ equal
+ (else 'equal)) @result{} equal
(cond ((assv 'b '((a 1) (b 2))) => cadr)
- (else #f)) ⟹ 2
+ (else #f)) @result{} 2
@end example
@@ -1430,14 +1430,14 @@ procedure are returned by the case expression.
(case (* 2 3)
((2 3 5 7) 'prime)
- ((1 4 6 8 9) 'composite)) ⟹ composite
+ ((1 4 6 8 9) 'composite)) @result{} composite
(case (car '(c d))
((a) 'a)
- ((b) 'b)) ⟹ unspecified
+ ((b) 'b)) @result{} unspecified
(case (car '(c d))
((a e i o u) 'vowel)
((w y) 'semivowel)
- (else => (lambda (x) x))) ⟹ c
+ (else => (lambda (x) x))) @result{} c
@end example
@@ -1450,10 +1450,10 @@ are returned. If there are no expressions, then #t is returned.
@example
-(and (= 2 2) (> 2 1)) ⟹ #t
-(and (= 2 2) (< 2 1)) ⟹ #f
-(and 1 2 'c '(f g)) ⟹ (f g)
-(and) ⟹ #t
+(and (= 2 2) (> 2 1)) @result{} #t
+(and (= 2 2) (< 2 1)) @result{} #f
+(and 1 2 'c '(f g)) @result{} (f g)
+(and) @result{} #t
@end example
@@ -1466,11 +1466,11 @@ expressions, then #f is returned.
@example
-(or (= 2 2) (> 2 1)) ⟹ #t
-(or (= 2 2) (< 2 1)) ⟹ #t
-(or #f #f #f) ⟹ #f
+(or (= 2 2) (> 2 1)) @result{} #t
+(or (= 2 2) (< 2 1)) @result{} #t
+(or #f #f #f) @result{} #f
(or (memq 'b '(a b c))
- (/ 3 0)) ⟹ (b c)
+ (/ 3 0)) @result{} (b c)
@end example
@@ -1485,7 +1485,7 @@ evaluated in order. The result of the when expression is unspecified.
(when (= 1 1.0)
(display "1")
- (display "2")) ⟹ unspecified
+ (display "2")) @result{} unspecified
and prints 12
@end example
@@ -1501,7 +1501,7 @@ order. The result of the unless expression is unspecified.
(unless (= 1 1.0)
(display "1")
- (display "2")) ⟹ unspecified
+ (display "2")) @result{} unspecified
and prints nothing
@end example
@@ -1584,12 +1584,12 @@ are returned. Each binding of a <variable> has <body> as its region.
@example
(let ((x 2) (y 3))
- (* x y)) ⟹ 6
+ (* x y)) @result{} 6
(let ((x 2) (y 3))
(let ((x 7)
(z (+ x y)))
- (* z x))) ⟹ 35 See also ``named let,'' section 4.2.4.
+ (* z x))) @result{} 35 See also ``named let,'' section 4.2.4.
@end example
@@ -1611,7 +1611,7 @@ need not be distinct.
(let ((x 2) (y 3))
(let* ((x 7)
(z (+ x y)))
- (* z x))) ⟹ 70
+ (* z x))) @result{} 70
@end example
@@ -1643,7 +1643,7 @@ possible to define mutually recursive procedures.
#f
(even? (- n 1))))))
(even? 88))
-⟹ #t
+@result{} #t
@end example
@@ -1722,7 +1722,7 @@ corresponding <init>.
@example
(let-values (((root rem) (exact-integer-sqrt 32)))
- (* root rem)) ⟹ 35
+ (* root rem)) @result{} 35
@end example
@@ -1745,7 +1745,7 @@ and so on.
(let ((a 'a) (b 'b) (x 'x) (y 'y))
(let*-values (((a b) (values x y))
((x y) (values a b)))
- (list a b x y))) ⟹ (x y x y)
+ (list a b x y))) @result{} (x y x y)
@end example
@@ -1779,10 +1779,10 @@ input and output.
(and (= x 0)
(begin (set! x 5)
- (+ x 1))) ⟹ 6
+ (+ x 1))) @result{} 6
(begin (display "4 plus 1 equals ")
- (display (+ 4 1))) ⟹ unspecified and prints 4 plus 1 equals 5
+ (display (+ 4 1))) @result{} unspecified and prints 4 plus 1 equals 5
@end example
@@ -1830,12 +1830,12 @@ A <step> can be omitted, in which case the effect is the same as if (<variable>
(do ((vec (make-vector 5))
(i 0 (+ i 1)))
((= i 5) vec)
- (vector-set! vec i i)) ⟹ #(0 1 2 3 4)
+ (vector-set! vec i i)) @result{} #(0 1 2 3 4)
(let ((x '(1 3 5 7 9)))
(do ((x x (cdr x))
(sum 0 (+ sum (car x))))
- ((null? x) sum))) ⟹ 25
+ ((null? x) sum))) @result{} 25
@end example
@@ -1862,7 +1862,7 @@ Thus the execution of <body> can be repeated by invoking the procedure named by
(loop (cdr numbers)
nonneg
(cons (car numbers) neg)))))
-⟹ ((6 1 3) (-5 -2))
+@result{} ((6 1 3) (-5 -2))
@end example
@@ -1906,10 +1906,10 @@ promise is not a promise, it may be returned unchanged.
@example
-(force (delay (+ 1 2))) ⟹ 3
+(force (delay (+ 1 2))) @result{} 3
(let ((p (delay (+ 1 2))))
(list (force p) (force p)))
- ⟹ (3 3)
+ @result{} (3 3)
(define integers
(letrec ((next
@@ -1922,7 +1922,7 @@ promise is not a promise, it may be returned unchanged.
(lambda (stream) (cdr (force stream))))
(head (tail (tail integers)))
- ⟹ 2
+ @result{} 2
@end example
@@ -1946,7 +1946,7 @@ force will in effect force such sequences iteratively.
(stream-filter p? t))))))
(head (tail (tail (stream-filter odd? integers))))
- ⟹ 5
+ @result{} 5
@end example
@@ -1964,11 +1964,11 @@ is computed for a promise, no matter how many times it is forced.
count
(force p)))))
(define x 5)
-p ⟹ a promise
-(force p) ⟹ 6
-p ⟹ a promise, still
+p @result{} a promise
+(force p) @result{} 6
+p @result{} a promise, still
(begin (set! x 10)
- (force p)) ⟹ 6
+ (force p)) @result{} 6
@end example
@@ -1981,8 +1981,8 @@ are supported in some implementations:
distinguished from its forced value. That is, expressions like the following may evaluate
to either #t or to #f, depending on the implementation:
- (eqv? (delay 1) 1) ⟹ unspecified
- (pair? (delay (cons 1 2))) ⟹ unspecified
+ (eqv? (delay 1) 1) @result{} unspecified
+ (pair? (delay (cons 1 2))) @result{} unspecified
* Implementations may implement ``implicit forcing,'' where the value of a promise is
forced by procedures that operate only on arguments of a certain type, like cdr and *.
However, procedures that operate uniformly on their arguments, like list, must not
@@ -1990,9 +1990,9 @@ are supported in some implementations:
@example
-(+ (delay (* 3 7)) 13) ⟹ unspecified
+(+ (delay (* 3 7)) 13) @result{} unspecified
(car
- (list (delay (* 3 7)) 13)) ⟹ a promise
+ (list (delay (* 3 7)) 13)) @result{} a promise
@end example
@@ -2083,15 +2083,15 @@ without the need to pass the value to every procedure in the call chain explicit
(define (f n) (number->string n (radix)))
-(f 12) ⟹ "12"
+(f 12) @result{} "12"
(parameterize ((radix 2))
- (f 12)) ⟹ "1100"
-(f 12) ⟹ "12"
+ (f 12)) @result{} "1100"
+(f 12) @result{} "12"
-(radix 16) ⟹ unspecified
+(radix 16) @result{} unspecified
(parameterize ((radix 0))
- (f 12)) ⟹ error
+ (f 12)) @result{} error
@end example
@@ -2121,13 +2121,13 @@ See section 6.11 for a more complete discussion of exceptions.
((assq 'a condition) => cdr)
((assq 'b condition)))
(raise (list (cons 'a 42))))
-⟹ 42
+@result{} 42
(guard (condition
((assq 'a condition) => cdr)
((assq 'b condition)))
(raise (list (cons 'b 23))))
-⟹ (b . 23)
+@result{} (b . 23)
@end example
@@ -2159,18 +2159,18 @@ or vector <qq template>.
@example
-`(list ,(+ 1 2) 4) ⟹ (list 3 4)
+`(list ,(+ 1 2) 4) @result{} (list 3 4)
(let ((name 'a)) `(list ,name ',name))
-⟹ (list a (quote a))
+@result{} (list a (quote a))
`(a ,(+ 1 2) ,@@(map abs '(4 -5 6)) b)
-⟹ (a 3 4 5 6 b)
+@result{} (a 3 4 5 6 b)
`(( foo ,(- 10 3)) ,@@(cdr '(c)) . ,(car '(cons)))
-⟹ ((foo 7) . cons)
+@result{} ((foo 7) . cons)
`#(10 5 ,(sqrt 4) ,@@(map sqrt '(16 9)) 8)
-⟹ #(10 5 2 4 3 8)
+@result{} #(10 5 2 4 3 8)
(let ((foo '(foo bar)) (@@baz 'baz))
`(list ,@@foo , @@baz))
-⟹ (list foo bar baz)
+@result{} (list foo bar baz)
@end example
@@ -2182,11 +2182,11 @@ decreases by one inside each unquotation.
@example
`(a `(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)
-⟹ (a `(b ,(+ 1 2) ,(foo 4 d) e) f)
+@result{} (a `(b ,(+ 1 2) ,(foo 4 d) e) f)
(let ((name1 'x)
(name2 'y))
`(a `(b ,,name1 ,',name2 d) e))
-⟹ (a `(b ,x ,'y d) e)
+@result{} (a `(b ,x ,'y d) e)
@end example
@@ -2222,9 +2222,9 @@ write procedure may output either format.
@example
(quasiquote (list (unquote (+ 1 2)) 4))
-⟹ (list 3 4)
+@result{} (list 3 4)
'(quasiquote (list (unquote (+ 1 2)) 4))
-⟹ `(list ,(+ 1 2) 4)
+@result{} `(list ,(+ 1 2) 4)
i.e., (quasiquote (list (unquote (+ 1 2)) 4))
@end example
@@ -2260,8 +2260,8 @@ It is an error for the arguments not to agree with the <formals> of any <clause>
(e (- e 1) (- e 1)))
((< e b) r)))))
-(range 3) ⟹ (0 1 2)
-(range 3 5) ⟹ (3 4)
+(range 3) @result{} (0 1 2)
+(range 3 5) @result{} (3 4)
@end example
@@ -2342,12 +2342,12 @@ the <keyword>s, bound to the specified transformers. Each binding of a <keyword>
stmt2 ...))))))
(let ((if #t))
(given-that if (set! if 'now))
- if)) ⟹ now
+ if)) @result{} now
(let ((x 'outer))
(let-syntax ((m (syntax-rules () ((m) x))))
(let ((x 'inner))
- (m)))) ⟹ outer
+ (m)))) @result{} outer
@end example
@@ -2381,7 +2381,7 @@ expression.
(my-or x
(let temp)
(if y)
- y))) ⟹ 7
+ y))) @result{} 7
@end example
@@ -2516,7 +2516,7 @@ expand into code containing ellipses.
(begin expr (... ...))))))))
(be-like-begin sequence)
-(sequence 1 2 3 4) ⟹ 4
+(sequence 1 2 3 4) @result{} 4
@end example
@@ -2526,7 +2526,7 @@ they are hygienic (as required) and the following is not an error.
@example
(let ((=> #f))
- (cond (#t => 'ok))) ⟹ ok
+ (cond (#t => 'ok))) @result{} ok
@end example
@@ -2725,9 +2725,9 @@ error to perform a set! on an unboundvariable.
(define add3
(lambda (x) (+ x 3)))
-(add3 3) ⟹ 6
+(add3 3) @result{} 6
(define first car)
-(first '(1 2)) ⟹ 1
+(first '(1 2)) @result{} 1
@end example
@@ -2747,7 +2747,7 @@ the entire <body>. For example,
(let ((x 5))
(define foo (lambda (y) (bar x y)))
(define bar (lambda (a b) (+ (* a b) a)))
- (foo (+ x 3))) ⟹ 45
+ (foo (+ x 3))) @result{} 45
@end example
@@ -2792,11 +2792,11 @@ a procedure call.
@example
(define-values (x y) (exact-integer-sqrt 17))
-(list x y) ⟹ (4 1)
+(list x y) @result{} (4 1)
(let ()
(define-values (x y) (values 1 2))
- (+ x y)) ⟹ 3
+ (+ x y)) @result{} 3
@end example
@@ -2828,7 +2828,7 @@ precedes an inner definition will not apply an outer definition.
(set! a b)
(set! b tmp)))))
(swap! x y)
- (list x y)) ⟹ (2 1)
+ (list x y)) @result{} (2 1)
@end example
@@ -2925,13 +2925,13 @@ and pare? to be a predicate for instances of <pare>.
@example
-(pare? (kons 1 2)) ⟹ #t
- (pare? (cons 1 2)) ⟹ #f
- (kar (kons 1 2)) ⟹ 1
- (kdr (kons 1 2)) ⟹ 2
+(pare? (kons 1 2)) @result{} #t
+ (pare? (cons 1 2)) @result{} #f
+ (kar (kons 1 2)) @result{} 1
+ (kdr (kons 1 2)) @result{} 2
(let ((k (kons 1 2)))
(set-kar! k 3)
- (kar k)) ⟹ 3
+ (kar k)) @result{} 3
@end example
@@ -3306,19 +3306,19 @@ The eqv? procedure returns #f if:
@example
-(eqv? 'a 'a) ⟹ #t
-(eqv? 'a 'b) ⟹ #f
-(eqv? 2 2) ⟹ #t
-(eqv? 2 2.0) ⟹ #f
-(eqv? '() '()) ⟹ #t
-(eqv? 100000000 100000000) ⟹ #t
-(eqv? 0.0 +nan.0) ⟹ #f
-(eqv? (cons 1 2) (cons 1 2)) ⟹ #f
+(eqv? 'a 'a) @result{} #t
+(eqv? 'a 'b) @result{} #f
+(eqv? 2 2) @result{} #t
+(eqv? 2 2.0) @result{} #f
+(eqv? '() '()) @result{} #t
+(eqv? 100000000 100000000) @result{} #t
+(eqv? 0.0 +nan.0) @result{} #f
+(eqv? (cons 1 2) (cons 1 2)) @result{} #f
(eqv? (lambda () 1)
- (lambda () 2)) ⟹ #f
+ (lambda () 2)) @result{} #f
(let ((p (lambda (x) x)))
- (eqv? p p)) ⟹ #t
-(eqv? #f 'nil) ⟹ #f
+ (eqv? p p)) @result{} #t
+(eqv? #f 'nil) @result{} #f
@end example
@@ -3328,14 +3328,14 @@ value returned by eqv? must be a boolean.
@example
-(eqv? "" "") ⟹ unspecified
-(eqv? '#() '#()) ⟹ unspecified
+(eqv? "" "") @result{} unspecified
+(eqv? '#() '#()) @result{} unspecified
(eqv? (lambda (x) x)
- (lambda (x) x)) ⟹ unspecified
+ (lambda (x) x)) @result{} unspecified
(eqv? (lambda (x) x)
- (lambda (y) y)) ⟹ unspecified
-(eqv? 1.0e0 1.0f0) ⟹ unspecified
-(eqv? +nan.0 +nan.0) ⟹ unspecified
+ (lambda (y) y)) @result{} unspecified
+(eqv? 1.0e0 1.0f0) @result{} unspecified
+(eqv? +nan.0 +nan.0) @result{} unspecified
@end example
@@ -3356,27 +3356,27 @@ equivalence.
(let ((n 0))
(lambda () (set! n (+ n 1)) n))))
(let ((g (gen-counter)))
- (eqv? g g)) ⟹ #t
+ (eqv? g g)) @result{} #t
(eqv? (gen-counter) (gen-counter))
- ⟹ #f
+ @result{} #f
(define gen-loser
(lambda ()
(let ((n 0))
(lambda () (set! n (+ n 1)) 27))))
(let ((g (gen-loser)))
- (eqv? g g)) ⟹ #t
+ (eqv? g g)) @result{} #t
(eqv? (gen-loser) (gen-loser))
- ⟹ unspecified
+ @result{} unspecified
(letrec ((f (lambda () (if (eqv? f g) 'both 'f)))
(g (lambda () (if (eqv? f g) 'both 'g))))
(eqv? f g))
- ⟹ unspecified
+ @result{} unspecified
(letrec ((f (lambda () (if (eqv? f g) 'f 'both)))
(g (lambda () (if (eqv? f g) 'g 'both))))
(eqv? f g))
- ⟹ #f
+ @result{} #f
@end example
@@ -3387,11 +3387,11 @@ implementation-dependent.
@example
-(eqv? '(a) '(a)) ⟹ unspecified
-(eqv? "a" "a") ⟹ unspecified
-(eqv? '(b) (cdr '(a b))) ⟹ unspecified
+(eqv? '(a) '(a)) @result{} unspecified
+(eqv? "a" "a") @result{} unspecified
+(eqv? '(b) (cdr '(a b))) @result{} unspecified
(let ((x '(a)))
- (eqv? x x)) ⟹ #t
+ (eqv? x x)) @result{} #t
@end example
@@ -3421,23 +3421,23 @@ behave differently from eqv?.
@example
-(eq? 'a 'a) ⟹ #t
-(eq? '(a) '(a)) ⟹ unspecified
-(eq? (list 'a) (list 'a)) ⟹ #f
-(eq? "a" "a") ⟹ unspecified
-(eq? "" "") ⟹ unspecified
-(eq? '() '()) ⟹ #t
-(eq? 2 2) ⟹ unspecified
-(eq? #\A #\A) ⟹ unspecified
-(eq? car car) ⟹ #t
+(eq? 'a 'a) @result{} #t
+(eq? '(a) '(a)) @result{} unspecified
+(eq? (list 'a) (list 'a)) @result{} #f
+(eq? "a" "a") @result{} unspecified
+(eq? "" "") @result{} unspecified
+(eq? '() '()) @result{} #t
+(eq? 2 2) @result{} unspecified
+(eq? #\A #\A) @result{} unspecified
+(eq? car car) @result{} #t
(let ((n (+ 2 3)))
- (eq? n n)) ⟹ unspecified
+ (eq? n n)) @result{} unspecified
(let ((x '(a)))
- (eq? x x)) ⟹ #t
+ (eq? x x)) @result{} #t
(let ((x '#()))
- (eq? x x)) ⟹ #t
+ (eq? x x)) @result{} #t
(let ((p (lambda (x) x)))
- (eq? p p)) ⟹ #t
+ (eq? p p)) @result{} #t
@end example
@@ -3459,18 +3459,18 @@ structures, equal? must always terminate.
@example
-(equal? 'a 'a) ⟹ #t
-(equal? '(a) '(a)) ⟹ #t
+(equal? 'a 'a) @result{} #t
+(equal? '(a) '(a)) @result{} #t
(equal? '(a (b) c)
- '(a (b) c)) ⟹ #t
-(equal? "abc" "abc") ⟹ #t
-(equal? 2 2) ⟹ #t
+ '(a (b) c)) @result{} #t
+(equal? "abc" "abc") @result{} #t
+(equal? 2 2) @result{} #t
(equal? (make-vector 5 'a)
- (make-vector 5 'a)) ⟹ #t
+ (make-vector 5 'a)) @result{} #t
(equal? '#1=(a b . #1#)
- '#2=(a b a b . #2#)) ⟹ #t
+ '#2=(a b a b . #2#)) @result{} #t
(equal? (lambda (x) x)
- (lambda (y) y)) ⟹ unspecified
+ (lambda (y) y)) @result{} unspecified
@end example
@@ -3794,21 +3794,21 @@ The numbers +inf.0, -inf.0, and +nan.0 are real but not rational.
@example
-(complex? 3+4i) ⟹ #t
-(complex? 3) ⟹ #t
-(real? 3) ⟹ #t
-(real? -2.5+0i) ⟹ #t
-(real? -2.5+0.0i) ⟹ #f
-(real? #e1e10) ⟹ #t
-(real? +inf.0) ⟹ #t
-(real? +nan.0) ⟹ #t
-(rational? -inf.0) ⟹ #f
-(rational? 3.5) ⟹ #t
-(rational? 6/10) ⟹ #t
-(rational? 6/3) ⟹ #t
-(integer? 3+0i) ⟹ #t
-(integer? 3.0) ⟹ #t
-(integer? 8/4) ⟹ #t
+(complex? 3+4i) @result{} #t
+(complex? 3) @result{} #t
+(real? 3) @result{} #t
+(real? -2.5+0i) @result{} #t
+(real? -2.5+0.0i) @result{} #f
+(real? #e1e10) @result{} #t
+(real? +inf.0) @result{} #t
+(real? +nan.0) @result{} #t
+(rational? -inf.0) @result{} #f
+(rational? 3.5) @result{} #t
+(rational? 6/10) @result{} #t
+(rational? 6/3) @result{} #t
+(integer? 3+0i) @result{} #t
+(integer? 3.0) @result{} #t
+(integer? 8/4) @result{} #t
@end example
@@ -3831,9 +3831,9 @@ number, precisely one of these predicates is true.
@example
-(exact? 3.0) ⟹ #f
-(exact? #e3.0) ⟹ #t
-(inexact? 3.) ⟹ #t
+(exact? 3.0) @result{} #f
+(exact? #e3.0) @result{} #t
+(inexact? 3.) @result{} #t
@end example
@@ -3846,9 +3846,9 @@ z is both exact and an integer; otherwise returns #f.
@example
-(exact-integer? 32) ⟹ #t
-(exact-integer? 32.0) ⟹ #f
-(exact-integer? 32/5) ⟹ #f
+(exact-integer? 32) @result{} #t
+(exact-integer? 32.0) @result{} #f
+(exact-integer? 32/5) @result{} #f
@end example
@@ -3861,9 +3861,9 @@ on complex numbers if their real and imaginary parts are both finite. Otherwise
@example
-(finite? 3) ⟹ #t
-(finite? +inf.0) ⟹ #f
-(finite? 3.0+inf.0i) ⟹ #f
+(finite? 3) @result{} #t
+(finite? +inf.0) @result{} #f
+(finite? 3.0+inf.0i) @result{} #f
@end example
@@ -3875,10 +3875,10 @@ numbers if their real or imaginary parts or both are infinite. Otherwise it retu
@example
-(infinite? 3) ⟹ #f
-(infinite? +inf.0) ⟹ #t
-(infinite? +nan.0) ⟹ #f
-(infinite? 3.0+inf.0i) ⟹ #t
+(infinite? 3) @result{} #f
+(infinite? +inf.0) @result{} #t
+(infinite? +nan.0) @result{} #f
+(infinite? 3.0+inf.0i) @result{} #t
@end example
@@ -3890,10 +3890,10 @@ imaginary parts or both are +nan.0. Otherwise it returns #f.
@example
-(nan? +nan.0) ⟹ #t
-(nan? 32) ⟹ #f
-(nan? +nan.0+5.0i) ⟹ #t
-(nan? 1+2i) ⟹ #f
+(nan? +nan.0) @result{} #t
+(nan? 32) @result{} #f
+(nan? +nan.0+5.0i) @result{} #t
+(nan? 1+2i) @result{} #f
@end example
@@ -3960,8 +3960,8 @@ These procedures return the maximum or minimum of their arguments.
@example
-(max 3 4) ⟹ 4 ; exact
-(max 3.9 4) ⟹ 4.0 ; inexact
+(max 3 4) @result{} 4 ; exact
+(max 3.9 4) @result{} 4.0 ; inexact
@end example
@@ -3982,11 +3982,11 @@ These procedures return the sum or product of their arguments.
@example
-(+ 3 4) ⟹ 7
-(+ 3) ⟹ 3
-(+) ⟹ 0
-(* 4) ⟹ 4
-(*) ⟹ 1
+(+ 3 4) @result{} 7
+(+ 3) @result{} 3
+(+) @result{} 0
+(* 4) @result{} 4
+(*) @result{} 1
@end example
@@ -4012,11 +4012,11 @@ other arguments is a NaN.
@example
-(- 3 4) ⟹ -1
-(- 3 4 5) ⟹ -6
-(- 3) ⟹ -3
-(/ 3 4 5) ⟹ 3/20
-(/ 3) ⟹ 1/3
+(- 3 4) @result{} -1
+(- 3 4 5) @result{} -6
+(- 3) @result{} -3
+(/ 3 4 5) @result{} 3/20
+(/ 3) @result{} 1/3
@end example
@@ -4026,7 +4026,7 @@ The abs procedure returns the absolute value of its argument.
@example
-(abs -7) ⟹ 7
+(abs -7) @result{} 7
@end example
@@ -4069,7 +4069,7 @@ nr. For each of the division operators, there are three procedures defined as fo
n1
-n2) ⟹
+n2) @result{}
nq
@@ -4078,14 +4078,14 @@ nr
n1
-n2) ⟹
+n2) @result{}
nq
(<operator>-remainder
n1
-n2) ⟹
+n2) @result{}
nr
@@ -4138,7 +4138,7 @@ n2))
n1
n2)))
- ⟹ #t
+ @result{} #t
provided all numbers involved in that computation are exact.
@@ -4146,15 +4146,15 @@ Examples:
@example
-(floor/ 5 2) ⟹ 2 1
-(floor/ -5 2) ⟹ -3 1
-(floor/ 5 -2) ⟹ -3 -1
-(floor/ -5 -2) ⟹ 2 -1
-(truncate/ 5 2) ⟹ 2 1
-(truncate/ -5 2) ⟹ -2 -1
-(truncate/ 5 -2) ⟹ -2 1
-(truncate/ -5 -2) ⟹ 2 -1
-(truncate/ -5.0 -2) ⟹ 2.0 -1.0
+(floor/ 5 2) @result{} 2 1
+(floor/ -5 2) @result{} -3 1
+(floor/ 5 -2) @result{} -3 -1
+(floor/ -5 -2) @result{} 2 -1
+(truncate/ 5 2) @result{} 2 1
+(truncate/ -5 2) @result{} -2 -1
+(truncate/ 5 -2) @result{} -2 1
+(truncate/ -5 -2) @result{} 2 -1
+(truncate/ -5.0 -2) @result{} 2.0 -1.0
@end example
@@ -4184,11 +4184,11 @@ arguments. The result is always non-negative.
@example
-(gcd 32 -36) ⟹ 4
-(gcd) ⟹ 0
-(lcm 32 -36) ⟹ 288
-(lcm 32.0 -36) ⟹ 288.0 ; inexact
-(lcm) ⟹ 1
+(gcd 32 -36) @result{} 4
+(gcd) @result{} 0
+(lcm 32 -36) @result{} 288
+(lcm 32.0 -36) @result{} 288.0 ; inexact
+(lcm) @result{} 1
@end example
@@ -4204,10 +4204,10 @@ denominator is always positive. The denominator of 0 is defined to be 1.
@example
-(numerator (/ 6 4)) ⟹ 3
-(denominator (/ 6 4)) ⟹ 2
+(numerator (/ 6 4)) @result{} 3
+(denominator (/ 6 4)) @result{} 2
(denominator
- (inexact (/ 6 4))) ⟹ 2.0
+ (inexact (/ 6 4))) @result{} 2.0
@end example
@@ -4240,18 +4240,18 @@ x is halfway between two integers.
@example
-(floor -4.3) ⟹ -5.0
-(ceiling -4.3) ⟹ -4.0
-(truncate -4.3) ⟹ -4.0
-(round -4.3) ⟹ -4.0
+(floor -4.3) @result{} -5.0
+(ceiling -4.3) @result{} -4.0
+(truncate -4.3) @result{} -4.0
+(round -4.3) @result{} -4.0
-(floor 3.5) ⟹ 3.0
-(ceiling 3.5) ⟹ 4.0
-(truncate 3.5) ⟹ 3.0
-(round 3.5) ⟹ 4.0 ; inexact
+(floor 3.5) @result{} 3.0
+(ceiling 3.5) @result{} 4.0
+(truncate 3.5) @result{} 3.0
+(round 3.5) @result{} 4.0 ; inexact
-(round 7/2) ⟹ 4 ; exact
-(round 7) ⟹ 7
+(round 7/2) @result{} 4 ; exact
+(round 7) @result{} 7
@end example
@@ -4271,8 +4271,8 @@ rational of all.
@example
(rationalize
- (exact .3) 1/10) ⟹ 1/3 ; exact
-(rationalize .3 1/10) ⟹ #i1/3 ; inexact
+ (exact .3) 1/10) @result{} 1/3 ; exact
+(rationalize .3 1/10) @result{} #i1/3 ; inexact
@end example
@@ -4377,8 +4377,8 @@ Returns the square of z. This is equivalent to @code{(* z z)}.
@example
-(square 42) ⟹ 1764
-(square 2.0) ⟹ 4.0
+(square 42) @result{} 1764
+(square 2.0) @result{} 4.0
@end example
@@ -4392,8 +4392,8 @@ imaginary part.
@example
-(sqrt 9) ⟹ 3
-(sqrt -1) ⟹ +i
+(sqrt 9) @result{} 3
+(sqrt -1) @result{} +i
@end example
@@ -4407,8 +4407,8 @@ k < (s + 1)2.
@example
-(exact-integer-sqrt 4) ⟹ 2 0
-(exact-integer-sqrt 5) ⟹ 2 1
+(exact-integer-sqrt 4) @result{} 2 0
+(exact-integer-sqrt 5) @result{} 2 1
@end example
@@ -4466,12 +4466,12 @@ Then all of
@example
-(make-rectangular x1 x2) ⟹ z
-(make-polar x3 x4) ⟹ z
-(real-part z) ⟹ x1
-(imag-part z) ⟹ x2
-(magnitude z) ⟹ |x3|
-(angle z) ⟹ xangle
+(make-rectangular x1 x2) @result{} z
+(make-polar x3 x4) @result{} z
+(real-part z) @result{} x1
+(imag-part z) @result{} x2
+(magnitude z) @result{} |x3|
+(angle z) @result{} xangle
@end example
@@ -4595,9 +4595,9 @@ string.
@example
-(string->number "100") ⟹ 100
-(string->number "100" 16) ⟹ 256
-(string->number "1e2") ⟹ 100.0
+(string->number "100") @result{} 100
+(string->number "100" 16) @result{} 256
+(string->number "1e2") @result{} 100.0
@end example
@@ -4639,9 +4639,9 @@ programs.
@example
-#t ⟹ #t
-#f ⟹ #f
-'#f ⟹ #f
+#t @result{} #t
+#f @result{} #f
+'#f @result{} #f
@end example
@@ -4653,13 +4653,13 @@ obj is false, and returns #f otherwise.
@example
-(not #t) ⟹ #f
-(not 3) ⟹ #f
-(not (list 3)) ⟹ #f
-(not #f) ⟹ #t
-(not '()) ⟹ #f
-(not (list)) ⟹ #f
-(not 'nil) ⟹ #f
+(not #t) @result{} #f
+(not 3) @result{} #f
+(not (list 3)) @result{} #f
+(not #f) @result{} #t
+(not '()) @result{} #f
+(not (list)) @result{} #f
+(not 'nil) @result{} #f
@end example
@@ -4671,9 +4671,9 @@ obj is either #t or #f and returns #f otherwise.
@example
-(boolean? #f) ⟹ #t
-(boolean? 0) ⟹ #f
-(boolean? '()) ⟹ #f
+(boolean? #f) @result{} #t
+(boolean? 0) @result{} #f
+(boolean? '()) @result{} #f
@end example
@@ -4756,15 +4756,15 @@ next:
(define x (list 'a 'b 'c))
(define y x)
-y ⟹ (a b c)
-(list? y) ⟹ #t
-(set-cdr! x 4) ⟹ unspecified
-x ⟹ (a . 4)
-(eqv? x y) ⟹ #t
-y ⟹ (a . 4)
-(list? y) ⟹ #f
-(set-cdr! x x) ⟹ unspecified
-(list? x) ⟹ #f Within literal expressions and representations of objects read by the
+y @result{} (a b c)
+(list? y) @result{} #t
+(set-cdr! x 4) @result{} unspecified
+x @result{} (a . 4)
+(eqv? x y) @result{} #t
+y @result{} (a . 4)
+(list? y) @result{} #f
+(set-cdr! x x) @result{} unspecified
+(list? x) @result{} #f Within literal expressions and representations of objects read by the
read procedure, the forms '<datum>, `<datum>, ,<datum>, and ,@@<datum> denote
two-element lists whose first elements are the symbols quote, quasiquote, unquote, and
unquote-splicing, respectively. The second element in each case is <datum>. This
@@ -4779,10 +4779,10 @@ The pair? predicate returns #t if
obj is a pair, and otherwise returns #f.
-(pair? '(a . b)) ⟹ #t
-(pair? '(a b c)) ⟹ #t
-(pair? '()) ⟹ #f
-(pair? '#(a b)) ⟹ #f
+(pair? '(a . b)) @result{} #t
+(pair? '(a b c)) @result{} #t
+(pair? '()) @result{} #f
+(pair? '#(a b)) @result{} #f
procedure: (cons obj1 obj2)
@@ -4794,11 +4794,11 @@ obj1 and whose cdr is
obj2. The pair is guaranteed to be different (in the sense of eqv?) from every existing
object.
-(cons 'a '()) ⟹ (a)
-(cons '(a) '(b c d)) ⟹ ((a) b c d)
-(cons "a" '(b c)) ⟹ ("a" b c)
-(cons 'a 3) ⟹ (a . 3)
-(cons '(a b) 'c) ⟹ ((a b) . c)
+(cons 'a '()) @result{} (a)
+(cons '(a) '(b c d)) @result{} ((a) b c d)
+(cons "a" '(b c)) @result{} ("a" b c)
+(cons 'a 3) @result{} (a . 3)
+(cons '(a b) 'c) @result{} ((a b) . c)
procedure: (car pair)
@@ -4806,10 +4806,10 @@ Returns the contents of the car field of
pair. Note that it is an error to take the car of the empty list.
-(car '(a b c)) ⟹ a
-(car '((a) b c d)) ⟹ (a)
-(car '(1 . 2)) ⟹ 1
-(car '()) ⟹ error
+(car '(a b c)) @result{} a
+(car '((a) b c d)) @result{} (a)
+(car '(1 . 2)) @result{} 1
+(car '()) @result{} error
procedure: (cdr pair)
@@ -4817,9 +4817,9 @@ Returns the contents of the cdr field of
pair. Note that it is an error to take the cdr of the empty list.
-(cdr '((a) b c d)) ⟹ (b c d)
-(cdr '(1 . 2)) ⟹ 2
-(cdr '()) ⟹ error
+(cdr '((a) b c d)) @result{} (b c d)
+(cdr '(1 . 2)) @result{} 2
+(cdr '()) @result{} error
procedure: (set-car! pair obj)
@@ -4831,8 +4831,8 @@ pair.
(define (f) (list 'not-a-constant-list))
(define (g) '(constant-list))
-(set-car! (f) 3) ⟹ unspecified
-(set-car! (g) 3) ⟹ error
+(set-car! (f) 3) @result{} unspecified
+(set-car! (g) 3) @result{} error
procedure: (set-cdr! pair obj)
@@ -4891,12 +4891,12 @@ terminated by the empty list.
@example
-(list? '(a b c)) ⟹ #t
- (list? '()) ⟹ #t
- (list? '(a . b)) ⟹ #f
+(list? '(a b c)) @result{} #t
+ (list? '()) @result{} #t
+ (list? '(a . b)) @result{} #f
(let ((x (list 'a)))
(set-cdr! x x)
- (list? x)) ⟹ #f
+ (list? x)) @result{} #f
@end example
@@ -4911,7 +4911,7 @@ fill. Otherwise the initial contents of each element is unspecified.
@example
-(make-list 2 3) ⟹ (3 3)
+(make-list 2 3) @result{} (3 3)
@end example
@@ -4922,8 +4922,8 @@ Returns a newly allocated list of its arguments.
@example
-(list 'a (+ 3 4) 'c) ⟹ (a 7 c)
-(list) ⟹ ()
+(list 'a (+ 3 4) 'c) @result{} (a 7 c)
+(list) @result{} ()
@end example
@@ -4933,9 +4933,9 @@ Returns the length of @var{list}.
@example
-(length '(a b c)) ⟹ 3
-(length '(a (b) (c d e))) ⟹ 3
-(length '()) ⟹ 0
+(length '(a b c)) @result{} 3
+(length '(a (b) (c d e))) @result{} 3
+(length '()) @result{} 0
@end example
@@ -4952,12 +4952,12 @@ improper list results if the last argument is not a proper list.
@example
-(append '(x) '(y)) ⟹ (x y)
-(append '(a) '(b c d)) ⟹ (a b c d)
-(append '(a (b)) '((c))) ⟹ (a (b) (c))
+(append '(x) '(y)) @result{} (x y)
+(append '(a) '(b c d)) @result{} (a b c d)
+(append '(a (b)) '((c))) @result{} (a (b) (c))
-(append '(a b) '(c . d)) ⟹ (a b c . d)
-(append '() 'a) ⟹ a
+(append '(a b) '(c . d)) @result{} (a b c . d)
+(append '() 'a) @result{} a
@end example
@@ -4968,9 +4968,9 @@ Returns a newly allocated list consisting of the elements of
@example
-(reverse '(a b c)) ⟹ (c b a)
+(reverse '(a b c)) @result{} (c b a)
(reverse '(a (b c) d (e (f))))
-⟹ ((e (f)) d (b c) a)
+@result{} ((e (f)) d (b c) a)
@end example
@@ -5022,10 +5022,10 @@ k).)
@example
-(list-ref '(a b c d) 2) ⟹ c
+(list-ref '(a b c d) 2) @result{} c
(list-ref '(a b c d)
(exact (round 1.8)))
-⟹ c
+@result{} c
@end example
@@ -5050,10 +5050,10 @@ list.
(let ((ls (list 'one 'two 'five!)))
(list-set! ls 2 'three)
ls)
-⟹ (one two three)
+@result{} (one two three)
(list-set! '(0 1 2) 1 "oops")
-⟹ error ; constant list
+@result{} error ; constant list
@end example
@@ -5090,17 +5090,17 @@ compare, if given, and equal? otherwise.
@example
-(memq 'a '(a b c)) ⟹ (a b c)
-(memq 'b '(a b c)) ⟹ (b c)
-(memq 'a '(b c d)) ⟹ #f
-(memq (list 'a) '(b (a) c)) ⟹ #f
+(memq 'a '(a b c)) @result{} (a b c)
+(memq 'b '(a b c)) @result{} (b c)
+(memq 'a '(b c d)) @result{} #f
+(memq (list 'a) '(b (a) c)) @result{} #f
(member (list 'a)
- '(b (a) c)) ⟹ ((a) c)
+ '(b (a) c)) @result{} ((a) c)
(member "B"
'("a" "b" "c")
- string-ci=?) ⟹ ("b" "c")
-(memq 101 '(100 101 102)) ⟹ unspecified
-(memv 101 '(100 101 102)) ⟹ (101 102)
+ string-ci=?) @result{} ("b" "c")
+(memq 101 '(100 101 102)) @result{} unspecified
+(memv 101 '(100 101 102)) @result{} (101 102)
@end example
@@ -5133,19 +5133,19 @@ compare if given and equal? otherwise.
@example
(define e '((a 1) (b 2) (c 3)))
-(assq 'a e) ⟹ (a 1)
-(assq 'b e) ⟹ (b 2)
-(assq 'd e) ⟹ #f
+(assq 'a e) @result{} (a 1)
+(assq 'b e) @result{} (b 2)
+(assq 'd e) @result{} #f
(assq (list 'a) '(((a)) ((b)) ((c))))
- ⟹ #f
+ @result{} #f
(assoc (list 'a) '(((a)) ((b)) ((c))))
- ⟹ ((a))
+ @result{} ((a))
(assoc 2.0 '((1 1) (2 4) (3 9)) =)
- ⟹ (2 4)
+ @result{} (2 4)
(assq 5 '((2 3) (5 7) (11 13)))
- ⟹ unspecified
+ @result{} unspecified
(assv 5 '((2 3) (5 7) (11 13)))
- ⟹ (5 7)
+ @result{} (5 7)
@end example
@@ -5174,8 +5174,8 @@ obj is a circular list.
(define a '(1 8 2 8)) ; a may be immutable
(define b (list-copy a))
(set-car! b 3) ; b is mutable
-b ⟹ (3 8 2 8)
-a ⟹ (1 8 2 8)
+b @result{} (3 8 2 8)
+a @result{} (1 8 2 8)
@end example
@@ -5206,12 +5206,12 @@ obj is a symbol, otherwise returns #f.
@example
-(symbol? 'foo) ⟹ #t
-(symbol? (car '(a b))) ⟹ #t
-(symbol? "bar") ⟹ #f
-(symbol? 'nil) ⟹ #t
-(symbol? '()) ⟹ #f
-(symbol? #f) ⟹ #f
+(symbol? 'foo) @result{} #t
+(symbol? (car '(a b))) @result{} #t
+(symbol? "bar") @result{} #f
+(symbol? 'nil) @result{} #t
+(symbol? '()) @result{} #f
+(symbol? #f) @result{} #f
@end example
@@ -5233,11 +5233,11 @@ procedures like string-set! to strings returned by this procedure.
@example
(symbol->string 'flying-fish)
- ⟹ "flying-fish"
-(symbol->string 'Martin) ⟹ "Martin"
+ @result{} "flying-fish"
+(symbol->string 'Martin) @result{} "Martin"
(symbol->string
(string->symbol "Malvina"))
- ⟹ "Malvina"
+ @result{} "Malvina"
@end example
@@ -5251,17 +5251,17 @@ would require escaping when written, but does not interpret escapes in its input
@example
(string->symbol "mISSISSIppi")
-⟹mISSISSIppi
+@result{}mISSISSIppi
(eqv? 'bitBlt (string->symbol "bitBlt"))
-⟹ #t
+@result{} #t
(eqv? 'LollyPop
(string->symbol
(symbol->string 'LollyPop)))
-⟹ #t
+@result{} #t
(string=? "K. Harper, M.D."
(symbol->string
(string->symbol "K. Harper, M.D.")))
-⟹ #t
+@result{} #t
@end example
@@ -5405,10 +5405,10 @@ This procedure returns the numeric value (0 to 9) of its argument if it is a num
@example
-(digit-value #\3) ⟹ 3
-(digit-value #\x0664) ⟹ 4
-(digit-value #\x0AE6) ⟹ 0
-(digit-value #\x0EA6) ⟹ #f
+(digit-value #\3) @result{} 3
+(digit-value #\x0664) @result{} 4
+(digit-value #\x0AE6) @result{} 0
+(digit-value #\x0EA6) @result{} #f
@end example
@@ -5578,11 +5578,11 @@ string. There is no requirement for this procedure to execute in constant time.
(define (f) (make-string 3 #\*))
(define (g) "***")
-(string-set! (f) 0 #\?) ⟹ unspecified
-(string-set! (g) 0 #\?) ⟹ error
+(string-set! (f) 0 #\?) @result{} unspecified
+(string-set! (g) 0 #\?) @result{} error
(string-set! (symbol->string 'immutable)
0
- #\?) ⟹ error
+ #\?) @result{} error
@end example
@@ -5746,7 +5746,7 @@ making sure to copy in the correct direction in such circumstances.
(define a "12345")
(define b (string-copy "abcde"))
(string-copy! b 1 a 0 2)
-b ⟹ "a12de"
+b @result{} "a12de"
@end example
@@ -5811,7 +5811,7 @@ analogous to list.
@example
-(vector 'a 'b 'c) ⟹ #(a b c)
+(vector 'a 'b 'c) @result{} #(a b c)
@end example
@@ -5839,11 +5839,11 @@ vector.
(vector-ref '#(1 1 2 3 5 8 13 21)
5)
-⟹ 8
+@result{} 8
(vector-ref '#(1 1 2 3 5 8 13 21)
(exact
(round (* 2 (acos -1)))))
-⟹ 13
+@result{} 13
@end example
@@ -5868,10 +5868,10 @@ vector.
(let ((vec (vector 0 '(2 2 2 2) "Anna")))
(vector-set! vec 1 '("Sue" "Sue"))
vec)
-⟹ #(0 ("Sue" "Sue") "Anna")
+@result{} #(0 ("Sue" "Sue") "Anna")
(vector-set! '#(0 1 2) 1 "doe")
-⟹ error ; constant vector
+@result{} error ; constant vector
@end example
@@ -5897,11 +5897,11 @@ In both procedures, order is preserved.
@example
(vector->list '#(dah dah didah))
-⟹ (dah dah didah)
+@result{} (dah dah didah)
(vector->list '#(dah dah didah) 1 2)
-⟹ (dah)
+@result{} (dah)
(list->vector '(dididit dah))
-⟹ #(dididit dah)
+@result{} #(dididit dah)
@end example
@@ -5940,9 +5940,9 @@ In both procedures, order is preserved.
@example
-(string->vector "ABC") ⟹ #(#\A #\B #\C)
+(string->vector "ABC") @result{} #(#\A #\B #\C)
(vector->string
- #(#\1 #\2 #\3) ⟹ "123"
+ #(#\1 #\2 #\3) @result{} "123"
@end example
@@ -5964,9 +5964,9 @@ of the old.
(define a #(1 8 2 8)) ; a may be immutable
(define b (vector-copy a))
(vector-set! b 0 3) ; b is mutable
-b ⟹ #(3 8 2 8)
+b @result{} #(3 8 2 8)
(define c (vector-copy b 1 3))
-c ⟹ #(8 2)
+c @result{} #(8 2)
@end example
@@ -6008,7 +6008,7 @@ making sure to copy in the correct direction in such circumstances.
(define a (vector 1 2 3 4 5))
(define b (vector 10 20 30 40 50))
(vector-copy! b 1 a 0 2)
-b ⟹ #(10 1 2 40 50)
+b @result{} #(10 1 2 40 50)
@end example
@@ -6021,7 +6021,7 @@ of the given vectors.
@example
(vector-append #(a b c) #(d e f))
-⟹ #(a b c d e f)
+@result{} #(a b c d e f)
@end example
@@ -6044,7 +6044,7 @@ end.
(define a (vector 1 2 3 4 5))
(vector-fill! a 'smash 2 4)
a
-⟹ #(1 2 smash smash 5)
+@result{} #(1 2 smash smash 5)
@end example
@@ -6087,7 +6087,7 @@ byte, otherwise the contents of each element are unspecified.
@example
-(make-bytevector 2 12) ⟹ #u8(12 12)
+(make-bytevector 2 12) @result{} #u8(12 12)
@end example
@@ -6098,8 +6098,8 @@ Returns a newly allocated bytevector containing its arguments.
@example
-(bytevector 1 3 5 1 3 5) ⟹ #u8(1 3 5 1 3 5)
-(bytevector) ⟹ #u8()
+(bytevector 1 3 5 1 3 5) @result{} #u8(1 3 5 1 3 5)
+(bytevector) @result{} #u8()
@end example
@@ -6127,7 +6127,7 @@ bytevector.
(bytevector-u8-ref '#u8(1 1 2 3 5 8 13 21)
5)
-⟹ 8
+@result{} 8
@end example
@@ -6152,7 +6152,7 @@ bytevector.
(let ((bv (bytevector 1 2 3 4)))
(bytevector-u8-set! bv 1 3)
bv)
-⟹ #u8(1 3 3 4)
+@result{} #u8(1 3 3 4)
@end example
@@ -6171,7 +6171,7 @@ end.
@example
(define a #u8(1 2 3 4 5))
-(bytevector-copy a 2 4)) ⟹ #u8(3 4)
+(bytevector-copy a 2 4)) @result{} #u8(3 4)
@end example
@@ -6213,7 +6213,7 @@ by making sure to copy in the correct direction in such circumstances.
(define a (bytevector 1 2 3 4 5))
(define b (bytevector 10 20 30 40 50))
(bytevector-copy! b 1 a 0 2)
-b ⟹ #u8(10 1 2 40 50)
+b @result{} #u8(10 1 2 40 50)
@end example
@@ -6229,7 +6229,7 @@ elements in the given bytevectors.
@example
(bytevector-append #u8(0 1 2) #u8(3 4 5))
-⟹ #u8(0 1 2 3 4 5)
+@result{} #u8(0 1 2 3 4 5)
@end example
@@ -6259,8 +6259,8 @@ end and returns the corresponding bytevector.
@example
-(utf8->string #u8(#x41)) ⟹ "A"
-(string->utf8 "λ") ⟹ #u8(#xCE #xBB)
+(utf8->string #u8(#x41)) @result{} "A"
+(string->utf8 "λ") @result{} #u8(#xCE #xBB)
@end example
@@ -6280,14 +6280,14 @@ obj is a procedure, otherwise returns #f.
@example
-(procedure? car) ⟹ #t
-(procedure? 'car) ⟹ #f
+(procedure? car) @result{} #t
+(procedure? 'car) @result{} #f
(procedure? (lambda (x) (* x x)))
- ⟹ #t
+ @result{} #t
(procedure? '(lambda (x) (* x x)))
- ⟹ #f
+ @result{} #f
(call-with-current-continuation procedure?)
- ⟹ #t
+ @result{} #t
@end example
@@ -6300,14 +6300,14 @@ proc with the elements of the list @code{(append (list arg1 @dots{}) args)} as t
@example
-(apply + (list 3 4)) ⟹ 7
+(apply + (list 3 4)) @result{} 7
(define compose
(lambda (f g)
(lambda args
(f (apply g args)))))
-((compose sqrt *) 12 75) ⟹ 30
+((compose sqrt *) 12 75) @result{} 30
@end example
@@ -6339,19 +6339,19 @@ returns are not mutated.
@example
(map cadr '((a b) (d e) (g h)))
-⟹ (b e h)
+@result{} (b e h)
(map (lambda (n) (expt n n))
'(1 2 3 4 5))
-⟹ (1 4 27 256 3125)
+@result{} (1 4 27 256 3125)
-(map + '(1 2 3) '(4 5 6 7)) ⟹ (5 7 9)
+(map + '(1 2 3) '(4 5 6 7)) @result{} (5 7 9)
(let ((count 0))
(map (lambda (ignored)
(set! count (+ count 1))
count)
- '(a b))) ⟹ (1 2)
+ '(a b))) @result{} (1 2)
or (2 1)
@@ -6382,13 +6382,13 @@ earlier returns are not mutated.
@example
(string-map char-foldcase "AbdEgH")
-⟹ "abdegh"
+@result{} "abdegh"
(string-map
(lambda (c)
(integer->char (+ 1 (char->integer c))))
"HAL")
-⟹ "IBM"
+@result{} "IBM"
(string-map
(lambda (c k)
@@ -6396,7 +6396,7 @@ earlier returns are not mutated.
c))
"studlycaps xxx"
"ululululul")
-⟹ "StUdLyCaPs"
+@result{} "StUdLyCaPs"
@end example
@@ -6424,21 +6424,21 @@ earlier returns are not mutated.
@example
(vector-map cadr '#((a b) (d e) (g h)))
-⟹ #(b e h)
+@result{} #(b e h)
(vector-map (lambda (n) (expt n n))
'#(1 2 3 4 5))
-⟹ #(1 4 27 256 3125)
+@result{} #(1 4 27 256 3125)
(vector-map + '#(1 2 3) '#(4 5 6 7))
-⟹ #(5 7 9)
+@result{} #(5 7 9)
(let ((count 0))
(vector-map
(lambda (ignored)
(set! count (+ count 1))
count)
- '#(a b))) ⟹ #(1 2)
+ '#(a b))) @result{} #(1 2)
or #(2 1)
@@ -6476,7 +6476,7 @@ proc to mutate any of the lists.
(for-each (lambda (i)
(vector-set! v i (* i i)))
'(0 1 2 3 4))
- v) ⟹ #(0 1 4 9 16)
+ v) @result{} #(0 1 4 9 16)
@end example
@@ -6509,7 +6509,7 @@ proc to mutate any of the strings.
(string-for-each
(lambda (c) (set! v (cons (char->integer c) v)))
"abcde")
- v) ⟹ (101 100 99 98 97)
+ v) @result{} (101 100 99 98 97)
@end example
@@ -6542,7 +6542,7 @@ proc to mutate any of the vectors.
(vector-for-each
(lambda (i) (list-set! v i (* i i)))
'#(0 1 2 3 4))
- v) ⟹ (0 1 4 9 16)
+ v) @result{} (0 1 4 9 16)
@end example
@@ -6596,7 +6596,7 @@ call-with-current-continuation.
(if (negative? x)
(exit x)))
'(54 0 37 -3 245 19))
- #t)) ⟹ -3
+ #t)) @result{} -3
(define list-length
(lambda (obj)
@@ -6610,9 +6610,9 @@ call-with-current-continuation.
(else (return #f))))))
(r obj))))))
-(list-length '(1 2 3 4)) ⟹ 4
+(list-length '(1 2 3 4)) @result{} 4
-(list-length '(a b . c)) ⟹ #f
+(list-length '(a b . c)) @result{} #f
@end example
@@ -6663,9 +6663,9 @@ consumer is the continuation of the call to call-with-values.
(call-with-values (lambda () (values 4 5))
(lambda (a b) b))
- ⟹ 5
+ @result{} 5
-(call-with-values * -) ⟹ -1
+(call-with-values * -) @result{} -1
@end example
@@ -6755,7 +6755,7 @@ after is unspecified.
(c 'talk2)
(reverse path))))
-⟹ (connect talk1 disconnect
+@result{} (connect talk1 disconnect
connect talk2 disconnect)
@end example
@@ -6806,7 +6806,7 @@ thunk.
(k 'exception))
(lambda ()
(+ 1 (raise 'an-error))))))
- ⟹ exception
+ @result{} exception
and prints condition: an-error
(with-exception-handler
@@ -6856,7 +6856,7 @@ the values it returns become the values returned by the call to raise-continuabl
(+ (raise-continuable "should be a number")
23)))
prints: should be a number
- ⟹ 65
+ @result{} 65
@end example
@@ -6988,15 +6988,15 @@ eval to allow other objects.
@example
(eval '(* 7 3) (environment '(scheme base)))
- ⟹ 21
+ @result{} 21
(let ((f (eval '(lambda (f x) (f x x))
(null-environment 5))))
(f + 10))
- ⟹ 20
+ @result{} 20
(eval '(define foo 32)
(environment '(scheme base)))
- ⟹ error is signaled
+ @result{} error is signaled
@end example
@@ -7181,7 +7181,7 @@ the order they were output. If the result string is modified, the effect is unsp
(newline)
(get-output-string (current-output-port)))
-⟹ "piece by piece by piece.\n"
+@result{} "piece by piece by piece.\n"
@end example
@@ -7619,7 +7619,7 @@ resulting string.
@example
(get-environment-variable "PATH")
-⟹ "/usr/local/bin:/usr/bin:/bin"
+@result{} "/usr/local/bin:/usr/bin:/bin"
@end example
@@ -7633,7 +7633,7 @@ or the alist itself.
@example
(get-environment-variables)
-⟹ (("USER" . "root") ("HOME" . "/"))
+@result{} (("USER" . "root") ("HOME" . "/"))
@end example
@@ -7687,7 +7687,7 @@ modify this list. Here is an example of what features might return:
@example
-(features) ⟹
+(features) @result{}
(r7rs ratios exact-complex full-unicode
gnu-linux little-endian
fantastic-scheme